Reliability and Explainability of AI – An Example of Face Recognition

Dr Thomas Lampert

Chair of Artificial Intelligence and Data Science

lampert@unistra.fr

Télécom Physique Strasbourg

SDC Research Team, ICube, University of Strasbourg

Al and Legal Practice

- Why use AI?
 - greater strains on civil and criminal justice systems
 - streamlining certain 'routine' activities (i.e. those with highly predictable outcomes)
 - reduce the burden on people
 - increase the speed and efficacy of collecting more and better evidence for use in criminal prosecutions
- We can already see these advances in, e.g. the medical domain

AI and Legal Practice

- **Trustworthy AI** requires three components (AI HLEG*):
 - (1) it should be **lawful**, ensuring compliance with all applicable laws and regulations,
 - (2) it should be **ethical**, ensuring adherence to ethical principles and values and
 - (3) it should be **robust**, both from a technical and social perspective since to ensure that, even with good intentions, AI systems do not cause any unintentional harm.

Al and Legal Practice

- According to AI HLEG's Ethics Guidelines for Trustworthy Artificial Intelligence, the requirements for an AI system to be accepted are:
 - a. human agency and oversight,
 - b. technical robustness and safety,
 - c. privacy and data governance,
 - d. transparency,
 - e. diversity, non-discrimination and fairness,
 - f. societal and environmental wellbeing, and
 - g. accountability.
- Are we there yet?

Face Recognition

• NIST 2020 tests, best algorithm's error rate is 0.08% (< 1 error in 1000 images)

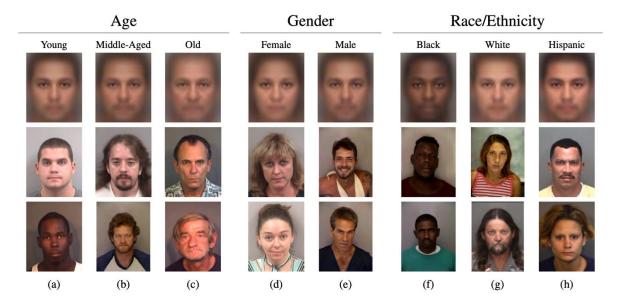
Model	Accuracy
DeepFace (Facebook)	97.25%
FaceNet (Google)	99.63%
Human	97.53%

• Can match or outperform humans (in constrained settings)...

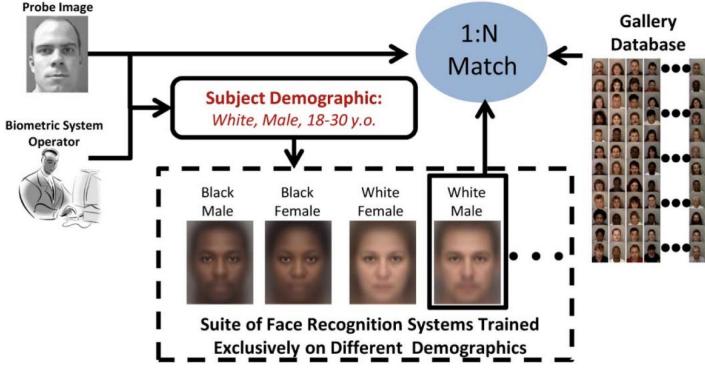
Face Recognition

- "ML predictions are (mostly) accurate but brittle" A. Mądry
- Weaknesses
 - Bias
 - Data source (quality, orientation, video, etc)
 - Super-resolution (data used to train, have GT)
 - Explainability
- Attacks
 - Generative
 - Adversarial
- Transparancy

- In 2012 Klare et al. found:
 - "Lower recognition accuracies on the following cohorts: females, Blacks, and younger subjects (18 to 30 years olds)."



 In forensic scenarios the use of dynamic face matcher selection may be preferred



Klare et al., Face Recognition Performance: Role of Demographic Information

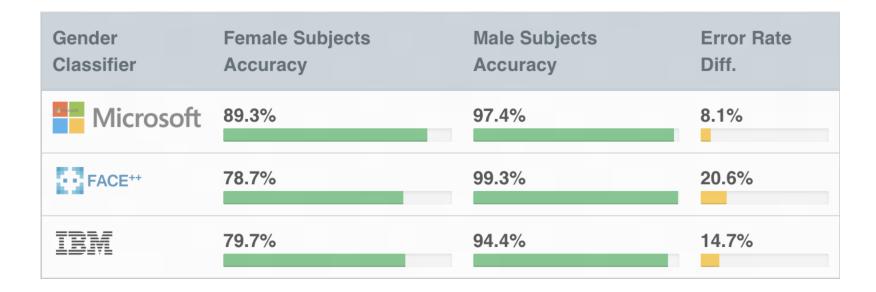
• ... and in 2024

Algorithm 🔶	Submission Date	FNMR Overall	FMR Min	FMR Max	FMR Max/Min
<u>sertis_003</u>	2023-12-27	0.0039 ⁽²⁰¹⁾	0.00003 E.Europe M (35- 50]	0.01213 W.Africa F (65-99]	420 ⁽²⁵⁷⁾
<u>rebs_001</u>	2023-12-22	0.0018 ⁽²⁷⁾	0.00000 E.Europe M (20- 35]	0.00486 W.Africa F (65-99]	1505 ⁽⁴⁷⁹⁾
<u>roc_016</u>	2023-12-19	0.0018 ⁽²⁶⁾	0.00007 E.Europe F (12- 20]	0.00831 W.Africa F (65-99]	122 ⁽²³⁾
intellivision_007	2023-12-19	0.0093 ⁽³⁶⁹⁾	0.00004 E.Europe M (35- 50]	0.01214 W.Africa F (65-99]	327 ⁽¹³¹⁾
cyberlink_013	2023-12-15	0.0040 ⁽²⁰⁶⁾	0.00002 E.Europe M (35- 50]	0.00427 W.Africa F (65-99]	266 ⁽⁹¹⁾

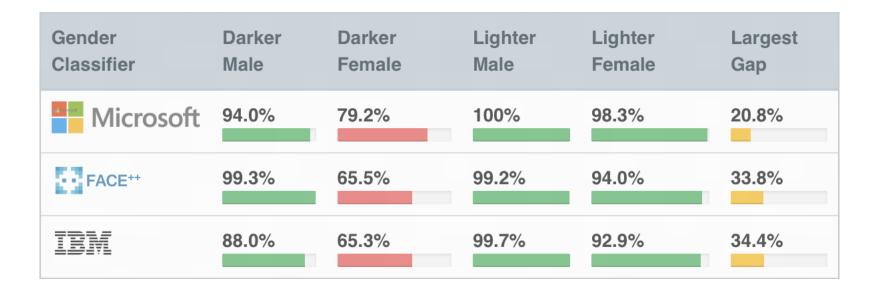
• Even simpler tasks involving the face, e.g. gender identification exhibit the same limitations

Gender Classifier	Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark (2017)
Microsoft	93.7%
FACE**	90.0%
IBM	87.9%

• Even simpler tasks involving the face, e.g. gender identification exhibit the same limitations



• Even simpler tasks involving the face, e.g. gender identification exhibit the same limitations



http://gendershades.org/overview.html

 Algorithms are generally developed with high resolution images

• Super Resolution

Low-Resolution

Reconstructed

Low-Resolution

Original

Reconstructed

Yu et al., Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes, CVPR, 2018

Original

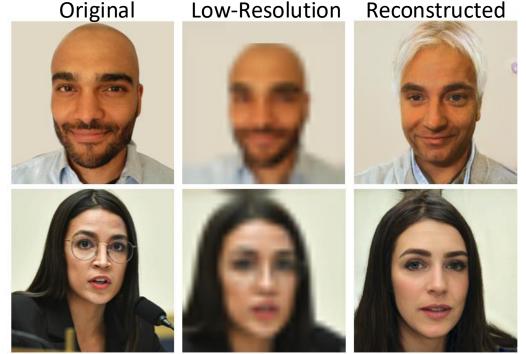
• Super Resolution



https://x.com/tg_bomze/status/1274245778551328769 https://x.com/Chicken3gg/status/1274314622447820801

- Even training on more diverse data does not guarantee to solve the problem
 - Model training problems

- Al is based on statistics
 - If the information is not there, it does not exist
 - These are (statistically likely) inventions (that depend on the data, model, ...)



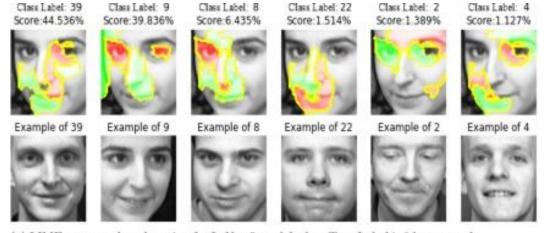
https://x.com/osazuwa/status/1274444300894572546

Weaknesses – Explainability

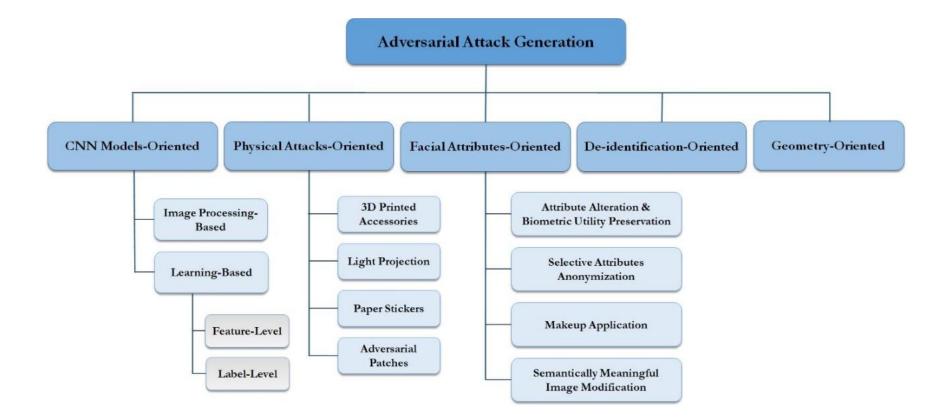
- The power of current AI algorithms is derived from their nonlinear, multi-layered structure
- Inherently their output cannot be explained easily

Weaknesses – Explainability

- Use ad hoc external approaches:
 - Does not reveal what is salient
 - Often misses impacts with less magnitude
 - Identified regions contain both useful and unuseful information
 - Requires human to interpret (biased)
 - Ad hoc general approaches
 - Can be wrong



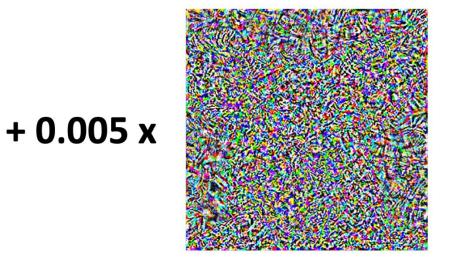
(a) LIME-generated explanation for LeNet-5 model when True Label is 9 but wrongly predicted as Label is 39.



Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey

Pig (91%)

Noise (NOT random)

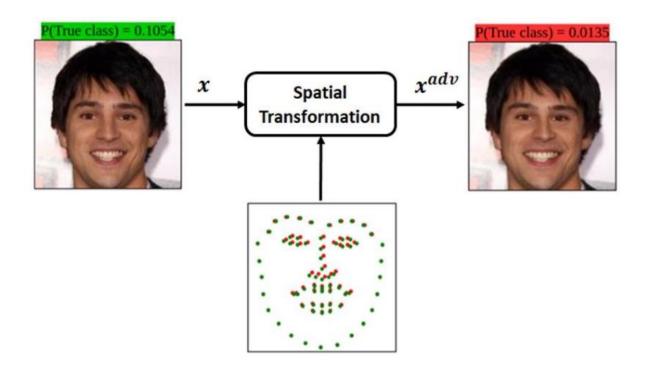


Pig (91%)

+ 0.005 x

_

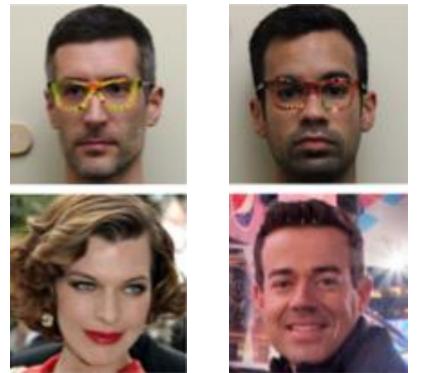
Aeroplane (99%)



Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey

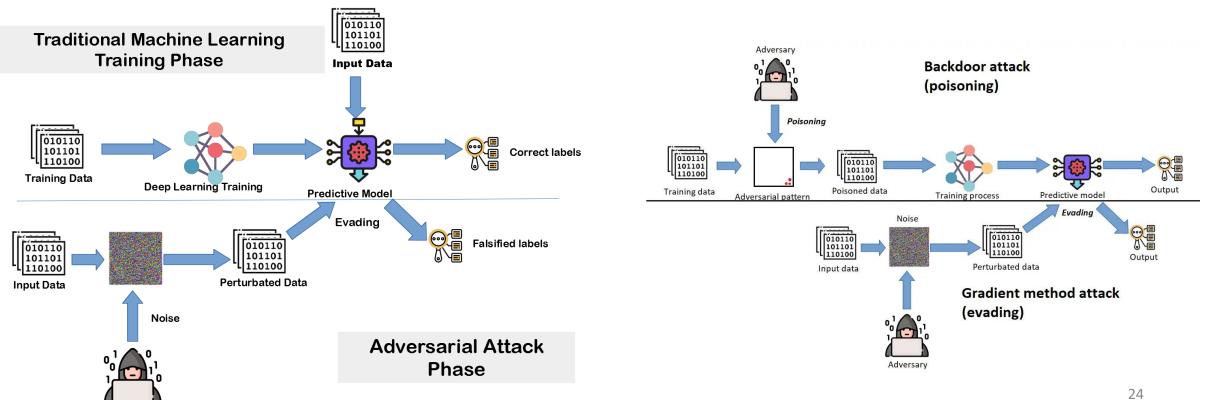
- Allows an attacker to evade recognition or impersonate somebody else
- Can also be used in real life!

Zhou et al., Invisible Mask: Practical Attacks on Face Recognition with Infrared

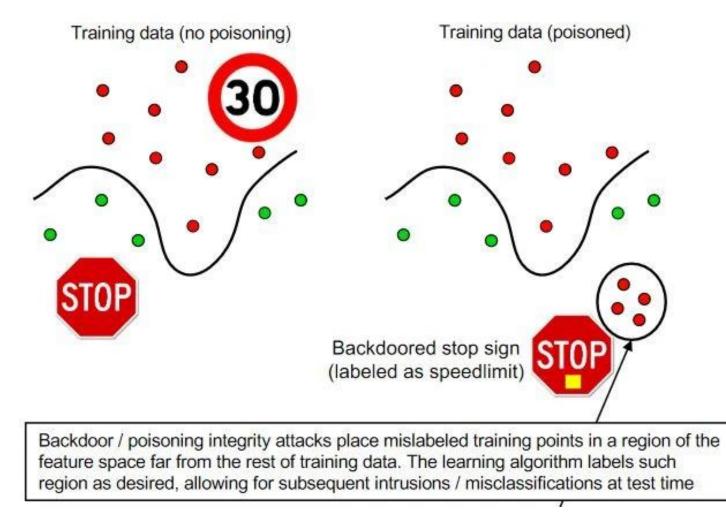


Sharif et al., Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

 Poisoning attacks embed hidden malicious behaviour into deep learning models

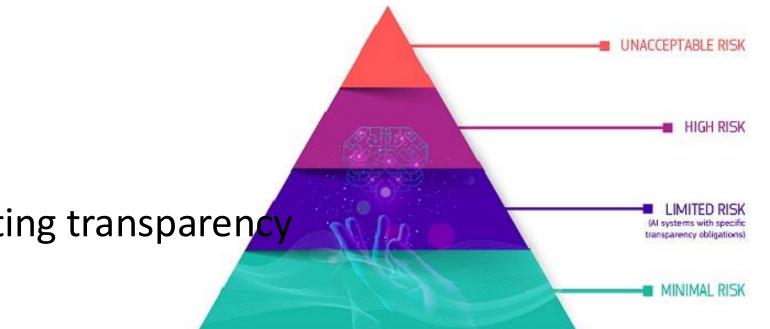


https://towardsdatascience.com/adversarial-machine-learning-mitigation-adversarial-learning-9ae04133c137



Transparancy

- Commercial systems are protected (trade secrets)
- A user can be unsure of:
 - Architecture
 - Training data
 - Evaluation protocols
 - Training strategy
- Regulations are targeting transparency



https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

Conclusions

- AI holds great possibility for analysing data
- Caution is needed to ensure that the correct information is presented
- ... and risks quantified
- Checks need to be in place to ensure that it is not relied upon