

"Data! Data! Data!"

Al in forensics

Rolf Ypma

Sherlock Holmes

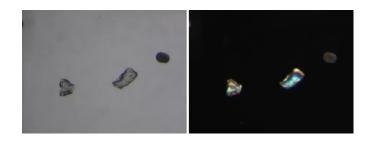
Principal Scientist | Forensic Data Scientist

Netherlands Forensic Institute

r.ypma at nfi.nl

Uses of AI (algorithms)

- > Supportive processes / automation
 - Mostly internal/low impact
- > Finding traces
- > Evidence evaluation



Fast automated results

- > DNA (and drugs)
- > Initial identification effort in three days, rather than two weeks
 - No machine learning
 - Well understood algorithms
 - A lot of testing/validation
 - Slow stepwise introduction
- > Described in the ministry of Justice 'algorithm registry'

Finding traces	BERT	
	Examples	Score
	Mate he wil visit and luere him ans they will shoot him!	0.94
	He has to disapppear, it is enough	0.99
	No worries mate he will sleep tomorrow	0.99
	Oh shoot I forgot that	0.00
	Your friends sleep over?	0.00

Next: physical traces

Finding traces - considerations

> Model

- Development (or procurement)
 - Base model provenance/datasets
 - Data
- Validation
 - When is it fit for use?
 - Data
- Deployment
 - Who will use it how for what?
 - Training/documentation/model cards

Finding traces - considerations

- > What could go wrong?
 - Traces missed. Exhonerating traces?
 - Overreliance on computer. Criminal message because computer says so?
 - Bias. Messages predominantly found for one demographic as model was trained on these?

Evidence evaluation

```
Likelihood Ratio (LR) = P(E|H_1) / P(E|H_2)
```

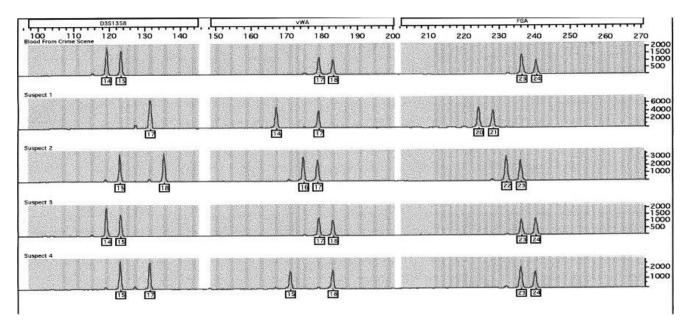
'Does the evidence fit the first or the second hypothesis better?'

Evidence evaluation - DNA

Likelihood Ratio (LR) = P(E|H1) / P(E|H2)

'Does the evidence fit the first or the second hypothesis better?'

E: the measurements on the DNA


H1: suspect is the donor of the DNA

H2: someone else is the donor of the DNA

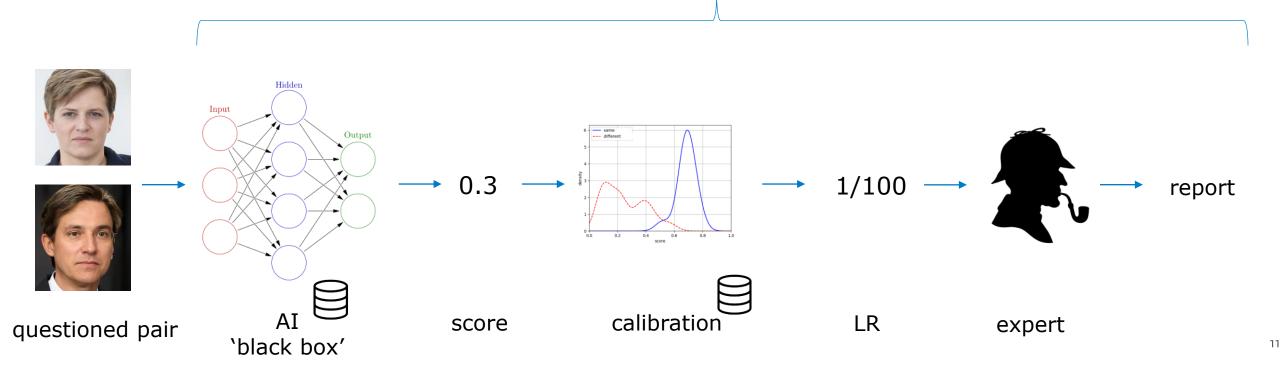
Evidence evaluation

- > Algorithmic evaluation has been a goal for two decades
- > To alleviate bias

Thompson (2009)

Evidence evaluation – DNA

Likelihood Ratio (LR) = P(E|H1) / P(E|H2)


~ 1 / frequency of this DNA profile

Few and interpretable parameters Relatively predictable output 'Explainable'

AI (eg deep learning) in evidence evaluation

Fit for purpose?

- Verdicts can be based to a large extent on algorithm output
- > Are AI algorithms reliable (enough)?
- > Opinion: explainability is not the answer

Evidence evaluation – biometry

No 'simple' profile, but audio/image files

'Simple' algorithms perform poorly

Deep learning ('Al') performs well

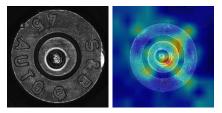
= 'Ridiculously large mathematical equations, based on data rather than knowledge'

What does this parameter do? What will the output be for this image?

- we will not know until when we test it
- so we test it

Analogy

	Forensic DNA analysis	Medicinal drugs
Users	Lawyers/triers of fact	Patients
Practitioners	Forensic DNA experts	Doctors
Developers	Statisticians	Bioengineers
Trust	Understanding	Clinical trials


Conclusion

- > Al/algorithms are used throughout forensics
 - Impact in automated output / evidence evaluation
- > We think AI can be used responsibly in evidence evaluation
 - Strong validation
 - Strong human oversight
 - Explainability where possible

Explainability

- > Uses
 - Increase trust
 - Enable improvements
 - Rule out applicability

Cartridge cases

> Notes

- Phrenology and lie detectors were 'explained'
- Experts are not